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Overview

• IFP (Intuitionistic Fixed Point Logic) is a proof system that
has been developed by U. Berger and collaborators (M.
Seisenberger, O. Petrovska, H. Tsuiki) since 2009.

• IFP is an extension of first-order logic by by strictly positive
inductive and coinductive definitions.

• IFP is in particular used for program extraction of exact real
computation programs.

• The goal of this work is to do IFP style proofs in the Coq
proof assistant and possibly to translate between the two proof
assistants.
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Intuitionistic Fixed Point Logic

IFP is a schema for a proof system over different abstract
mathematical spaces.
An instance of IFP consists of a language L and a set of axioms A.

The Language L consists of

1. Sorts ι, ι1, . . . as names for abstract mathematical spaces

2. Terms s, t consisting of variables, constants and function
symbols

3. Predicate constants of fixed arity

Relative to L we define

• Formulas: s = t, P(t), A ∧ B , A ∨ B , A→ B , ∀x A, ∃x A.
• Predicates: Variables, constants, λx A, µ(Φ), ν(Φ).

• Operators: λX P (P strictly positive in X )
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Axioms

A formula is called non-computational if it is disjunction-free and
contains no free predicate variables.

Axioms in IFP are closed non-computational (disjunction-free)
formulas.
Example:

∀x ∀y ¬(x < y)→ y ≤ x

is OK but
∀x ∀y x < y ∨ y ≤ x

is not.

4



Axioms

A formula is called non-computational if it is disjunction-free and
contains no free predicate variables.
Axioms in IFP are closed non-computational (disjunction-free)
formulas.
Example:

∀x ∀y ¬(x < y)→ y ≤ x

is OK but
∀x ∀y x < y ∨ y ≤ x

is not.

4



Realizability and Program Extraction

• IFP’s primary goal is program extraction

• Careful distinction between computational and
non-computational (Harrop) formulas

• Harrop expressions are realized by Nil

• Uniform interpretation of quantifiers:

a R ♦x A = ♦x (a R A) for ♦ ∈ {∃,∀}

• Implemented in the Prawf proof assistant (U. Berger, O.
Petrovska, H. Tsuiki)
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Induction rules

IFP contains the following rules for strictly positive induction and
coinduction:

Φ(µ(Φ)) ⊆ µ(Φ)
CL(Φ)

Φ(P) ⊆ P

µ(Φ) ⊆ P
IND(Φ,P)

ν(Φ) ⊆ Φ(ν(Φ))
COCL(Φ)

P ⊆ Φ(P)

P ⊆ ν(Φ)
COIND(Φ,P)

A ⊆ B is short for ∀x A x → B x .
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Example: The language of real numbers

Language:

• Sorts: one sort R

• Constants: −1, 0, 1
• Functions: +,−, ∗, /, . . .
• Predicate constants: <,≤

Axioms:

• Disjunction-free formulation of axioms of real closed field etc.

7



Example: Natural numbers

We can define natural numbers inductively by

N(x) = µ(λXλx (x = 0 ∨ X (x − 1)))

Induction and Closure rules:

∀x ((x = 0 ∨ N(x − 1))→ N(x))
CL(N)

∀x (x = 0 ∨ P(x − 1))→ P(x)

∀x N(x)→ P(x)
IND(N,P)

8



IFP and Coq

IFP

• Intuitionistic first-order logic

• Can add (nc) axioms

• Program Extraction

• Well-suited for proofs over
abstract mathematical
spaces (real numbers,...)

• Partiality

Coq

• Constructive Type Theory

• Can add axioms

• Program Extraction,
Computation

• General purpose, many
libraries

9



IFP-Coq

For each language L and set of axioms A, we define a set of Coq
axioms by

1. For each sort ι in L, define ι as a term constant (axiom) of
Prop.

2. For each constant c of sort ι, define c as a term constant
(axiom) of type ι.

3. For each function symbol f of arity ι1 × · · · × ιn → ι, define f

as a term constant (axiom) of type ι1 → · · · → ιn → ι.

4. For each predicate symbol P of arity (ι1, · · · ιn), define P as a
term constant (axiom) of type ι1 → · · · → ιn → Set.

5. For each operator symbol Q of arity (ι1, · · · ιn), define Q as a
term constant (axiom) of type
(ι1 → · · · → ιn → Set)→ (ι1 → · · · → ιn → Set).
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Translating Formulas i

1. H(c : ι) = ` c : ι,

2. H(f : ι1 × · · · × ιn → ι) = ` f : ι1 → · · · → ιn → ι,

3. H(x : ι) = x : ι ` x : ι,

4. H(C : predicate(ι1, . . . , ιd)) = ` C : ι1 → · · · → ιn → Set,

5. H(X : predicate(ι1, . . . , ιd)) = X : ι1 → · · · → ιd → Prop `
X : ι1 → · · · → ιd → Set,

6. H(f (t1, · · · , tn) : ι) = Γ ` f t ′1 · · · t ′n : ι when
H(ti : ιi ) = Γi ` t ′i : ιi and Γ =

⋃
i Γi ,

7. H(t1 = t2) = Γ ` t ′1 = t ′2 : Prop when H(t1) = Γ1 ` t ′1 : ι,
H(t2) = Γ2 ` t ′2 : ι, and Γ = Γ1 ∪ Γ2,

8. H(P ∨ Q) = Γ ` P ′ ∨ Q ′ when H(P) = Γ1 ` P ′ : Prop,
H(Q) = Γ2 ` Q ′ : Prop, and Γ = Γ1 ∪ Γ2,
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Translating Formulas ii

9. H(P ∧ Q) = Γ ` P ′ ∧ Q ′ when H(P) = Γ1 ` P ′ : Prop,
H(Q) = Γ2 ` Q ′ : Prop, and Γ = Γ1 ∪ Γ2,

10. H(P → Q) = Γ ` P ′ → Q ′ when H(P) = Γ1 ` P ′ : Prop,
H(Q) = Γ2 ` Q ′ : Prop, and Γ = Γ1 ∪ Γ2,

11. H(∃x P) = Γ \ (x : ι) ` ∃(x : ι). P ′ when H(x) = x : ι and
H(P) = Γ ` P ′ : Prop,

12. H(∀x P) = Γ \ (x : ι) ` ∀(x : ι). P ′ when H(x) = x : ι and
H(P) = Γ ` P ′ : Prop,

13. H(λx P) = Γ \ (x : ι) ` λ(x : ι). P ′ when H(x) = x : ι and
H(P) = Γ ` P ′ : Prop,
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Translating Formulas iii

14. H(λX P) = Γ \ (X : (ι1 → · · · → ιn → Prop)) ` λ(X :

(ι1 · · · → ιn → Prop)). P ′ when
H(X ) = X : ι1 → · · · → ιn → Prop and
H(P) = Γ ` P ′ : Prop,

13



Inductive Types

For each expression µ(Φ) in IFP we define an inductive type in Coq:

Inductive MPhi : (ι -> Prop) :=
MPhic: forall x, (Phi Mphi x) -> Mphi x.

where Phi is the translation of Φ.

The right induction principle will in general not be generated by
Coq but

Lemma ind_Phi: forall (P : ι -> Prop),
forall x, ((Phi P x) -> P x) -> Mphi x -> P x.

can be proven.
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Example

We formalized the real number examples from

Ulrich Berger, Hideki Tsuiki: Intuitionistic Fixed Point Logic.
Annals of Pure and Applied Logic 172.3 (2021): 102903.

Recall the definition of natural numbers in IFP:

N(x) = µ(λXλx (x = 0 ∨ X (x − 1)))

⇒ Demo in Coq.
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Signed Digit Representation

The signed-digit representation for a real number x ∈ [−1, 1] can
be defined by ν(ΦSD) with

ΦSD := λXλx ∃d ∈ SD |2x − d | ≤ 1 ∧ X (2x − d)

where
SD = {−1, 0, 1}

16



Mixed Induction/Coinduction

Nested inductive/coinductive definitions are used in IFP e.g. to
define uniformly continuous functions. However, Coq does not
accept the coinductive proof because it is not formally guarded.

17



Interpreting IFP in Type Theory

We embed IFP in Coq using only a simple subset of Coq’s
dependent type theory without general induction and coinduction.
We only use the type constructions

• 0, 1,

• N,

• A + B ,

• A× B ,

• Π,Σ,

• =,

• The existence of a type Set, which is a universe of small types.

18



Formalizing IFP Syntax

IFP language L consists of

• a finite set of sorts S = {ι1, · · · , ιn},
• a finite set of (arity attached) constants
C = {c1 : ι′1, · · · , cn : ι′n} where ι′i ∈ S ,

• a finite set of (arity attached) operators
O = {o1 : ι′11× · · ·× ι1n1 → ι′1, · · · , on : ι′n1× · · ·× ιnnn → ι′d}
where ι′i , ι

′
jk ∈ S , and

• a finite set of (airty attached) relations
R = {r1 : (ι′11, · · · , ι1n1), · · · , on : (ι′n1, · · · , ιnnn)}.
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Formalizing IFP Syntax

The term language consists of (i) v variables, (ii) constants, and
(iii) operations.

t ::= x variable∣∣ c c ∈ C constants∣∣ o(t1, · · · , tn) o ∈ O operations

20



Formalizing IFP Syntax

The logical language is defined with the simultaneously defined
formulae, predicates, and operators.

21



Formalizing IFP Syntax

Formulae:

A,B ::= t1 = t2 equality∣∣ A ∨ B disjunction∣∣ A ∧ B conjunction∣∣ A→ B implication∣∣ ∃x : ι. A existence∣∣ ∀x : ι. A universal∣∣ P(t1, · · · , tn) application

22



Formalizing IFP Syntax

Predicates:

P,Q ::= X predicate variable∣∣ r r ∈ R relational constants∣∣ λ(x1 : ι1, · · · , xd : ιd). A abstraction∣∣ µ(Φ) least fixed points∣∣ ν(Φ) greatest fixed points

Operators:

Φ ::= λ(X : (ι1, · · · , ιn)). P abstraction

23



Set Theoretical Semantics of IFP

We start with the basic semantics of the language L:

• For each ι ∈ S , its semantics is a set JιKSet ∈ Set.

• For each (c : ι) ∈ C , its semantics is a point JcKSet ∈ JιKSet.

• For each (o : ι1 × · · · × ιn → ι) ∈ O, its semantics is a
morphism JoKSet : Jι1KSet × · · · × JιnKSet → JιKSet.

• For each (r : (ι1, · · · , ιn)) ∈ R , its semantics is a relation
JrKSet : Jι1KSet × · · · × JιnKSet → {t, f }.
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Set Theoretic Semantics of IFP

• For a well-formed formula Γ; ∆ ` A, we define its semantics to
be a family of sets JΓ; ∆ ` AKSet : JΓKSet × J∆KSet → Set.

• For a well-formed predicate Γ; ∆ ` A : (ι1, · · · , ιn), we define
its semantics to be a function JΓ; ∆ ` P : (ι1, · · · , ιn)KSet :

JΓKSet × J∆KSet → Jι1KSet × · · · × JιnKSet → {t, f }.
• For a well-formed operator Γ; ∆ `op Φ : (ι1, · · · , ιn), we define

its semantics to be a function JΓ; ∆ ` P : (ι1, · · · , ιn)KSet :

JΓKSet × J∆KSet → Jι1KSet × · · · × JιnKSet → {t, f }.
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Set theoretical semantics of IFP

For any sequence of families c : N→ A→ Set, we define the
operators

t(c) :≡ λ(x : A). Σ(n : N). c n x u(c) :≡ λ(x : A). Π(n : N). c n x

t and u are countable join and meet, respectively.

For any function f : (A→ Set)→ (A→ Set), we define:

µf := tf n⊥

νf := uf n>
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Future work

• Realizability Interpretation of IFP

• Complete Formalization

• (Partial) translation from Coq proofs to IFP proofs

• Extension to CFP

27


