1

Formalization of Categorial Grammar

Masaya Taniguchi

Japan Advanced Institute of Science and Technology

November, 2021

' This work was supported by Grant-Aid for JSPS Fellows Number 21J15207.

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

utline

@ Categorial Grammar

© Combinatory Categorial Grammar

© Lambek Calculus

@ Restricted Continuation Passing Style Transformation
© Q Combinator and D Combinator

@ Conclusion

@ Bonus: Editor for Isabelle

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

Categorial Grammar

Preliminaries
Definition (Category)

Let A and B be arbitrary any categories. The category is inductively defined as;
@ Atomic categories are NP, S,

@ Functional categories are A/B, B\ A.

We use capital Greek letters I', A, 3,0, ... for sequences of categories.

Example (Functional Category)
Let a lexicon ¢ be a map from a word to a category.
£(1) = NP {(love) = (NP\S)/NP {(you) = NP

Then, the sequence of words “I love you" is a sentence.

M. Taniguchi (JAIST)

Formalization of Categorial Grammar

November, 2021

3/22

Categorial Grammar

Isabelle/HOL

datatype 'a category =
Atomic 'a ("™")
| LeftFunctional "'a category" "'a category" (infix "«" 65)
| RightFunctional "'a category" "'a category" (infix "-" 65)

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 4/22

Categorial Grammar

Definition

Definition (Categorial Grammar (Steedman, 2000))

We use the sequent-style system. This system is intuitionistic and it has no structural rules.

< > I'=A AAY =B
A, A\B =B B/A,A= B AT S =B Cut
For any given lexicon ¢, a sequence of words wy, ..., w, is a sentence

if and only if £(wy),...,l(w,) = S.

Slogan

The sequence is acceptable if it is derivable.

o Coqg: Martin-Gémez et.al., ccg2lambda: A compositional System
@ Agda: Wen Kokke, Type-logical Grammar in Agda

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 5/22

Categorial Grammar
Isabelle/HOL

inductive CategorialGrammar
:: "'a category list = 'a category = bool" (infix "=CG" 60) where
L: "[B«<A,A] —CG B"
| R: "[A,A-B] —CG B"
| Cut: "[l /CG A; A@[A]l@2+CG B] = A@I@2+—CG B"
lemma "[NP,(NP-S)«NP, NP]J-CG S"
proof-
have "[(NP-S)«<NP, NP]-CG NP-S"
by (simp add: L)
moreover have "[NP, NP-S] —CG S"
by (simp add: R)
ultimately show ?thesis
by (smt (verit, ccfv_threshold) Cut append_Cons append_Nil append_assoc)
ged

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 6/22

Categorial Grammar

Example

Example (Categorial Grammar)

For the following ¢, the sequence of words “l love you” is a sentence because;

¢(1) = NP {(love) = (NP\S)/NP {(you) =
(NP\S)/NP,NP = NP\S ~ NP,NP\S =5 zut

NP, NP\ (S/NP), =S

Definition (Language of Categorial Grammar)

For any given /, the language L is defined as L := {w; ... w, | n € N,l(wy),...,l(w,) = S}

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 7/22

Combinatory Categorial Grammar

Chomsky Hierarchy

Chomsky Hierarchy
@ Turing Machine
@ Context-Sensitive Grammar
Mildly Context-Sensitive Grammar (e.g., Combinatory Categorial Grammar)
o Context-Free Grammar (e.g., Categorial Grammar)
@ Regular Grammar

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 8/22

Combinatory Categorial Grammar

Definition

Definition (Combinatory Categorial Grammar (Steedman, 2000))

We use the sequent-style system. This system is intuitionistic and it has no structural rules.

- < S I'=A AJA Y= B
A, A\B= B B/A,A= B AT,>—= B

Cut

A/B.B/C= 4/C B AB,B\CS AC <P

ASX/AX) S As XA T

For any given lexicon ¢, a sequence of words wy,...,w, is a sentence
if and only if £(w1),...,0(w,) = S.

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

9/22

Combinatory Categorial Grammar
Isabelle/HOL

inductive CombinatoryCategorialGrammar
:: "'a category list = 'a category = bool" (infix "=CCG" 60) where
L : "[B«<A,A] HCCG B"
| LT : "[A] HCCG (B«<A)-B"
| LB : "[A«<B,B«<C] HCCG A«C"
| R: "[A,A-B] —CCG B"
| RT : "[A] FCCG B« (A-B)"
| RB : "[A-B,B—»C] —CCG A-C"
| Cut: "[T FCCG A; A@[A]@2HCCG B] = A@lI@z+CCG B"
theorem
fixes f:: "'a = 'b category" and S :: "'b category"
assumes "LCG = {W . map f W FCG S}" and "LCCG = {W . map f W CCG S}"
shows "LCG < LCCG" apply (simp add: assms) using CG_is_CCG by blast

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 10/22

Lambek Calculus

Definition

Definition (Lambek Calculus (van Benthem, 1988))
We use the sequent-style system. This system is intuitionistic and it has no structural rules.
— Ax INA,A=B Y= A
A=A IS A= B L
A, A= B E:>CL A, A= B E:>CL
[,5,0\A,A=B T,A/C,S,A=>B
A= B R AT =18 R
T=B/A = T=AB
For any given lexicon ¢, a sequence of words wy, ..., w, is a sentence
if and only if £(wy),...,l(w,) = S.

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

Lambek Calculus
Isabelle/HOL

inductive LambekGrammar
:: "'a category list = 'a category = bool" (infix "FL" 60) where
identity : "[A] HL A"
| Cut: "[T@[AIQAHFLB; 2 HFLA] = T@Z@A L B"
| LR : "[T@[A]J@A L B; 2 HL C] = Fr@z@[C~A]@A ~L B"
| LL : "[T@[AI@A FLB; Z L C] = T'@[A<Cl@Z@A L B"
| RR: "T@[A]FLB =T LB « A"
| RL: "[Al@f LB =T LA - B"
theorem
fixes f:: "'a = 'b category" and S :: "'b category"
assumes "LCCG = {W . mapfWFCCGS}"and "LL = {W . map fW L S}"
shows "LCCG < LL" apply (simp add: assms) using CCG_is_Lambek by blast

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 12/22

Restricted Continuation Passing Style Transformation

Definition

Definition (Continuation Passing Style Transformation (Plotkin, 1975))

In lambda calculus, we transform lambda term as follows.
[x] = Ak.kx

Ae. M| = Mk.k(Az.[M])
[MN] = Me.[M](Am.[N](An.mnk))

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

Restricted Continuation Passing Style Transformation

Definition

Definition (Type of CPS)

For any given type A, We also need to transform the type of lambda-term as follows.

X]=(X)—=A) = A (X)y=X (X =Y)=(X) = [Y]

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 14 /22

Restricted Continuation Passing Style Transformation

Definition

Definition (Type of CPS)

For any given type A, We also need to transform the type of lambda-term as follows.

X]=(X)—=A) = A (X)y=X (X =Y)=(X) = [Y]

Definition (Type of restricted CPS)

For any given type A, We transform the type of lambda-term as follows.

X]=(X)—>A) = A (X)=X (X =>Y)=X > [Y]

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

Restricted Continuation Passing Style Transformation

Definition

Definition (Type of restricted CPS)
For any given category A, We transform the type of lambda-term as follows.

[X] ~ A/((X\A) [X] ~ (A/(X)\A
(X) ~ X Y/X) ~ [Y]/X (Y/X) ~[Y]/X

Theorem (Restricted CPS is derivable in Lambek Calculus)

We show X = [X] and X = (X) in Isabelle/HOL.

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

Lambek Calculus
Isabelle/HOL

inductive rCPS :: "'a category = 'a category = 'a category = bool"

and rCPS' :: "'a category = 'a category = 'a category = bool"
where

"rCPS' A XY = rCPS A X ((A<Y)-A)"
| "rCPS' A XY = rCPS A X (A<(Y-A))"
| "rCPS A X2 Y2 = rCPS' A (("X1)-X2) ((~X1)-Y2)"
| "rCPS A X2 Y2 = rCPS' A (X2«("X1)) (Y2«(~X1))"
| "rCPS' A (~X) (™ X)"
theorem rCPS_transformation:
fixes A X :: "'a category"
shows "AY. rCPS' A XY = [X]HL Y"
and "AY. rCPS A XY = [X]—L Y"
proof ... ged

M. Taniguchi (JAIST)

Formalization of Categorial Grammar

November, 2021 16 /22

Q Combinator and D Combinator

Definition
Definition (Q combinator and D Combinator)

We use the sequent-style system. This system is intuitionistic and it has no structural rules.

[_ > r=4 AJA Y =B
A, A\B= B B/A,A= B AT Y= B

Cut

A/B,BJC = AJC 8 AJB = (4/0)(BJC) ~° BJjC= (4/BNA/C) ~ 1

AB.B\C=AC B BC=@BNAC L AB= @0)BC) 2
As x/Ax) T A= (X/ANX T
For any given lexicon ¢, a sequence of words wy,...,w, is a sentence
if and only if £(wy),...,0(w,) = S.

M. Taniguchi (JAIST) Formalization of Categorial Grammar

November, 2021 17 /22

Q Combinator and D Combinator

Incremental Parsing

The incremental parsing is a strategy for parsing a sentence from a head.

@ We obtain a parsing tree even if the utterance/ reading is in progress.

S S
/\ /\
NP NP\S S/NP NP
A /\
(NP\S)/NP NP S S\(S/NP)

N \
| talk with you | talk with you

Figure: Variations of Parsing Tree

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 18/22

Q Combinator and D Combinator

Incremental Parsing

The incremental parsing is a strategy for parsing a sentence from a head.
@ We obtain a parsing tree even if the utterance/ reading is in progress.

@ We predict what category comes next.

S S /\
T T S/NP NP
NP NP\S S/NP NP P
T PN S S\(S/NP)
(NP\S)/NP NP S S\(S/NP) PN
PN ‘ PaN ‘ NP (NP\S)/NP ? NP NP\S
| talkwith you ltalk with you N | |
| talk with ? | talk with ?

Figure: Variations of Parsing Tree .
Figure: Incomplete sentence

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

Q Combinator

Observation

Conjecture (Taniguchi and Tojo, LENLS2021)

For any given derivation of Categorial Grammar, there exists an incremental parsing of Q
Combinatory Categorial Grammar.

Table: Number of Accepted Sentences

Grammar \Number of Words ‘ 2 3 4 5 6
Non-incremental CG 2 8 40 224 1344
Incremental CG 2 4 8 16 32
Incremental CCG 2 8 32 128 512
Incremental QCCG 2 8 40 224 1344

2n—1L (2n—2

), where n is
n n—1

The number of derivations of the non-incremental CG is 2"~ 1C,_; =
the number of words and C,,_1 is the Catalan number of n leaves.

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 19/22

Q Combinator

Observation

Conjecture (Taniguchi and Tojo, LENLS2021)

For any given derivation of Categorial Grammar, there exists an incremental parsing of Q
Combinatory Categorial Grammar.

Future Work

We would like to proof this conjecture in Isabelle.

M. Taniguchi (JAIST) Formalization of Categorial Grammar

November, 2021 20/22

Conclusion

@ We have given the formal proof in Isabelle/HOL as follows.

» The restricted CPS transformation of Lambek Calculus.
» The inclusions of languages generated by CG, CCG, and Lambek.

@ We expect implementing a new parser by Sledgehammer in Isabelle/HOL.

@ Proof of the existence of the incremental paring is our immediate future task.

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 21/22

Bonus: Editors for Isabelle

Isabelle/PIDE is Language Server Protocol.
o jEdit': Isabelle/jEdit
e Visual Studio Code: Isabelle/VSCode
e Vim: coc-isabelle (https://github.com/ThreeFx/coc-isabelle)
e Emacs: isabelle-emacs (https://github.com/m-fleury/isabelle-emacs)
e jEdit with Vim: vimulator (https://github.com/thoughtbot/vimulator)

1 jEdit and Visual Studio Code are official projects of Isabelle developers.

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021

https://github.com/ThreeFx/coc-isabelle
https://github.com/m-fleury/isabelle-emacs
https://github.com/thoughtbot/vimulator

	Categorial Grammar
	Combinatory Categorial Grammar
	Lambek Calculus
	Restricted Continuation Passing Style Transformation
	Q Combinator and D Combinator
	Conclusion
	Bonus: Editor for Isabelle

