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Categorial Grammar

Preliminaries
Definition (Category)

Let A and B be arbitrary any categories. The category is inductively defined as;
@ Atomic categories are NP, S, .. ..

@ Functional categories are A/B, B\ A.

We use capital Greek letters I', A, 3,0, ... for sequences of categories.

Example (Functional Category)
Let a lexicon ¢ be a map from a word to a category.
£(1) = NP {(love) = (NP\S)/NP {(you) = NP

Then, the sequence of words “I love you" is a sentence.
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Categorial Grammar

Isabelle/HOL

datatype 'a category =
Atomic 'a ("™")
| LeftFunctional "'a category" "'a category" (infix "«" 65)
| RightFunctional "'a category" "'a category" (infix "-" 65)
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Categorial Grammar

Definition

Definition (Categorial Grammar (Steedman, 2000))

We use the sequent-style system. This system is intuitionistic and it has no structural rules.

< > I'=A AAY =B
A, A\B =B B/A,A= B AT S =B Cut
For any given lexicon ¢, a sequence of words wy, ..., w, is a sentence

if and only if £(wy),...,l(w,) = S.

Slogan

The sequence is acceptable if it is derivable.

o Coqg: Martin-Gémez et.al., ccg2lambda: A compositional System
@ Agda: Wen Kokke, Type-logical Grammar in Agda
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Categorial Grammar
Isabelle/HOL

inductive CategorialGrammar
:: "'a category list = 'a category = bool" (infix "=CG" 60) where
L: "[B«<A,A] —CG B"
| R: "[A,A-B] —CG B"
| Cut: "[l /CG A; A@[A]l@2+CG B] = A@I@2+—CG B"
lemma "[NP,(NP-S)«NP, NP]J-CG S"
proof-
have "[(NP-S)«<NP, NP]-CG NP-S"
by (simp add: L)
moreover have "[NP, NP-S] —CG S"
by (simp add: R)
ultimately show ?thesis
by (smt (verit, ccfv_threshold) Cut append_Cons append_Nil append_assoc)
ged
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Categorial Grammar

Example

Example (Categorial Grammar)

For the following ¢, the sequence of words “l love you” is a sentence because;

¢(1) = NP {(love) = (NP\S)/NP {(you) =
(NP\S)/NP,NP = NP\S ~ NP,NP\S =5 zut

NP, NP\ (S/NP), =S

Definition (Language of Categorial Grammar)

For any given /, the language L is defined as L := {w; ... w, | n € N,l(wy),...,l(w,) = S}
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Combinatory Categorial Grammar

Chomsky Hierarchy

Chomsky Hierarchy
@ Turing Machine
@ Context-Sensitive Grammar
Mildly Context-Sensitive Grammar (e.g., Combinatory Categorial Grammar)
o Context-Free Grammar (e.g., Categorial Grammar)
@ Regular Grammar
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Combinatory Categorial Grammar

Definition

Definition (Combinatory Categorial Grammar (Steedman, 2000))

We use the sequent-style system. This system is intuitionistic and it has no structural rules.

- < S I'=A AJA Y= B
A, A\B= B B/A,A= B AT,>—= B

Cut

A/B.B/C= 4/C B AB,B\CS AC <P

ASX/AX) S As XA T

For any given lexicon ¢, a sequence of words wy,...,w, is a sentence
if and only if £(w1),...,0(w,) = S.
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Combinatory Categorial Grammar
Isabelle/HOL

inductive CombinatoryCategorialGrammar
:: "'a category list = 'a category = bool" (infix "=CCG" 60) where
L : "[B«<A,A] HCCG B"
| LT : "[A] HCCG (B«<A)-B"
| LB : "[A«<B,B«<C] HCCG A«C"
| R: "[A,A-B] —CCG B"
| RT : "[A] FCCG B« (A-B)"
| RB : "[A-B,B—»C] —CCG A-C"
| Cut: "[T FCCG A; A@[A]@2HCCG B] = A@lI@z+CCG B"
theorem
fixes f:: "'a = 'b category" and S :: "'b category"
assumes "LCG = {W . map f W FCG S}" and "LCCG = {W . map f W CCG S}"
shows "LCG < LCCG" apply (simp add: assms) using CG_is_CCG by blast
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Lambek Calculus

Definition

Definition (Lambek Calculus (van Benthem, 1988))
We use the sequent-style system. This system is intuitionistic and it has no structural rules.
— Ax INA,A=B Y= A
A=A IS A= B L
A, A= B E:>CL A, A= B E:>CL
[,5,0\A,A=B T,A/C,S,A=>B
A= B R AT =18 R
T=B/A = T=AB
For any given lexicon ¢, a sequence of words wy, ..., w, is a sentence
if and only if £(wy),...,l(w,) = S.
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Lambek Calculus
Isabelle/HOL

inductive LambekGrammar
:: "'a category list = 'a category = bool" (infix "FL" 60) where
identity : "[A] HL A"
| Cut: "[T@[AIQAHFLB; 2 HFLA] = T@Z@A L B"
| LR : "[T@[A]J@A L B; 2 HL C] = Fr@z@[C~A]@A ~L B"
| LL : "[T@[AI@A FLB; Z L C] = T'@[A<Cl@Z@A L B"
| RR: "T@[A]FLB =T LB « A"
| RL: "[Al@f LB =T LA - B"
theorem
fixes f:: "'a = 'b category" and S :: "'b category"
assumes "LCCG = {W . mapfWFCCGS}"and "LL = {W . map fW L S}"
shows "LCCG < LL" apply (simp add: assms) using CCG_is_Lambek by blast
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Restricted Continuation Passing Style Transformation

Definition

Definition (Continuation Passing Style Transformation (Plotkin, 1975))

In lambda calculus, we transform lambda term as follows.
[x] = Ak.kx

Ae. M| = Mk.k(Az.[M])
[MN] = Me.[M](Am.[N](An.mnk))
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Restricted Continuation Passing Style Transformation

Definition

Definition (Type of CPS)

For any given type A, We also need to transform the type of lambda-term as follows.

X]=(X)—=A) = A (X)y=X (X =Y)=(X) = [Y]
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Restricted Continuation Passing Style Transformation

Definition

Definition (Type of CPS)

For any given type A, We also need to transform the type of lambda-term as follows.

X]=(X)—=A) = A (X)y=X (X =Y)=(X) = [Y]

Definition (Type of restricted CPS)

For any given type A, We transform the type of lambda-term as follows.

X]=(X)—>A) = A (X)=X (X =>Y)=X > [Y]
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Restricted Continuation Passing Style Transformation

Definition

Definition (Type of restricted CPS)
For any given category A, We transform the type of lambda-term as follows.

[X] ~ A/((X\A) [X] ~ (A/(X)\A
(X) ~ X Y/X) ~ [Y]/X (Y/X) ~[Y]/X

Theorem (Restricted CPS is derivable in Lambek Calculus)

We show X = [X] and X = (X) in Isabelle/HOL.
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Lambek Calculus
Isabelle/HOL

inductive rCPS :: "'a category = 'a category = 'a category = bool"

and rCPS' :: "'a category = 'a category = 'a category = bool"
where

"rCPS' A XY = rCPS A X ((A<Y)-A)"
| "rCPS' A XY = rCPS A X (A<(Y-A))"
| "rCPS A X2 Y2 = rCPS' A (("X1)-X2) ((~X1)-Y2)"
| "rCPS A X2 Y2 = rCPS' A (X2«("X1)) (Y2«(~X1))"
| "rCPS' A (~X) (™ X)"
theorem rCPS_transformation:
fixes A X :: "'a category"
shows "AY. rCPS' A XY = [X]HL Y"
and "AY. rCPS A XY = [X]—L Y"
proof ... ged
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Q Combinator and D Combinator

Definition
Definition (Q combinator and D Combinator)

We use the sequent-style system. This system is intuitionistic and it has no structural rules.

[ _ > r=4 AJA Y =B
A, A\B= B B/A,A= B AT Y= B

Cut

A/B,BJC = AJC 8 AJB = (4/0)(BJC) ~° BJjC= (4/BNA/C) ~ 1

AB.B\C=AC B BC=@BNAC L AB= @0)BC) 2
As x/Ax) T A= (X/ANX T
For any given lexicon ¢, a sequence of words wy,...,w, is a sentence
if and only if £(wy),...,0(w,) = S.
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Q Combinator and D Combinator

Incremental Parsing

The incremental parsing is a strategy for parsing a sentence from a head.

@ We obtain a parsing tree even if the utterance/ reading is in progress.

S S
/\ /\
NP NP\S S/NP NP
A /\
(NP\S)/NP NP S S\(S/NP)

N \
| talk with you | talk with you

Figure: Variations of Parsing Tree

M. Taniguchi (JAIST) Formalization of Categorial Grammar November, 2021 18/22



Q Combinator and D Combinator

Incremental Parsing

The incremental parsing is a strategy for parsing a sentence from a head.
@ We obtain a parsing tree even if the utterance/ reading is in progress.

@ We predict what category comes next.

S S /\
T T S/NP NP
NP NP\S S/NP NP P
T PN S S\(S/NP)
(NP\S)/NP NP S S\(S/NP) PN
PN ‘ PaN ‘ NP (NP\S)/NP ? NP NP\S
| talkwith  you ltalk  with  you N | |
| talk with ? | talk  with ?

Figure: Variations of Parsing Tree .
Figure: Incomplete sentence
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Q Combinator

Observation

Conjecture (Taniguchi and Tojo, LENLS2021)

For any given derivation of Categorial Grammar, there exists an incremental parsing of Q
Combinatory Categorial Grammar.

Table: Number of Accepted Sentences

Grammar \Number of Words ‘ 2 3 4 5 6
Non-incremental CG 2 8 40 224 1344
Incremental CG 2 4 8 16 32
Incremental CCG 2 8 32 128 512
Incremental QCCG 2 8 40 224 1344

2n—1L (2n—2

), where n is
n n—1

The number of derivations of the non-incremental CG is 2"~ 1C,_; =
the number of words and C,,_1 is the Catalan number of n leaves.
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Q Combinator

Observation

Conjecture (Taniguchi and Tojo, LENLS2021)

For any given derivation of Categorial Grammar, there exists an incremental parsing of Q
Combinatory Categorial Grammar.

Future Work

We would like to proof this conjecture in Isabelle.
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Conclusion

@ We have given the formal proof in Isabelle/HOL as follows.

» The restricted CPS transformation of Lambek Calculus.
» The inclusions of languages generated by CG, CCG, and Lambek.

@ We expect implementing a new parser by Sledgehammer in Isabelle/HOL.

@ Proof of the existence of the incremental paring is our immediate future task.
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Bonus: Editors for Isabelle

Isabelle/PIDE is Language Server Protocol.
o jEdit': Isabelle/jEdit
e Visual Studio Code: Isabelle/VSCode
e Vim: coc-isabelle (https://github.com/ThreeFx/coc-isabelle)
e Emacs: isabelle-emacs (https://github.com/m-fleury/isabelle-emacs)
e jEdit with Vim: vimulator (https://github.com/thoughtbot/vimulator)

1 jEdit and Visual Studio Code are official projects of Isabelle developers.
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