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Motivation

Why formalize the Lebesgue integral?

1 Develop probability theory on top of Coq(/MathComp)

2 More generally: development of reusable machinery for
analysis on top of MathComp

Approach:

• Stick to a standard presentation (a standard textbook
should serve as a documentation) and engineer
maintainable proofs (à la MathComp)

This presentation:

• Progress report about the formalization of the Lebesgue
integral

• As an illustration: a look at the proof of the monotone
convergence theorem (単調収束定理)
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MathComp-Analysis

MathComp-Analysis adds to MathComp several mathematical
structures for classical analysis [ACK+20, ACR18].

See https://github.com/math-comp/analysis PR# 371 and PR# 404
for this presentation.

https://github.com/math-comp/analysis
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The Lebesgue Measure in
MathComp-Analysis

Our Starting Point

Formal construction of the Lebesgue measure by extension of
an algebra of sets [AC21]. This includes:
• Formalization of measurable types whose sets form a
σ-algebra (完全加法族)

• Coq type: measurableType

• Formalization of measures
• Coq type: mu : {measure set T → R} with a
measurableType T and a realType R

• The Lebesgue measure
• Last but not the least: library lemmas

• to deal with extended real numbers (拡大実数, standard
definition)

• to deal with sequences of reals and extended real numbers
• to deal with infinite sums (extends bigop.v), etc.
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Measurable Function (可測関数)

• A function with domain D is measurable when the
preimage of any measurable set is measurable:

• Definition measurable_fun (T U : measurableType)

(D : set T) (f : T → U) :=

∀ Y, measurable Y → measurable ((f @−1 Y) ∩ D).

• There are many lemmas to prove about measurable
functions to prove Fatou’s lemma or the dominated
convergence theorem (優収束定理)

• In particular, the theory of limit superior and limit inferior
(上極限と下極限)
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Simple Function (単関数)

• A simple function f is defined by a sequence of
pairwise-disjoint and measurable sets A0, . . .An−1 and a
sequence of elements a0, . . . , an−1 such that
f (x) =

∑n−1
k=0 ak1Ak

(x) (1Ak
= 指示関数).

• Formalized as a telescope with a uniq range:

Variables (T : measurableType) (R : realType).
Record t := mk {
f :> T → R ;
rng : seq R ;
uniq_rng : uniq rng ;
full_rng : f @ setT = [set x | x ∈ rng] ;

mpi : ∀ k, measurable (f @−1 [set rng‘_k]) }.

• This gives the types
sfun T R of simple functions and
nnsfun T R of non-negative simple functions
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Illustration: Approximation
Theorem

For any (1) measurable set D, any (2) function f that is
(3) measurable and (4) non-negative, there exists a
(5) sequence of non-negative simple functions g that is
(6) non-decreasing and that (7) converges towards f .

Variables (D : set T) (mD : measurable D). (*1*)

Variables f : T → R. (*2*)

Hypothesis mf : measurable_fun D f. (*3*)

Hypothesis f0 : ∀ t, D t → 0 ≤ f t. (*4*)

Lemma approximation : ∃ g : (nnsfun T R)N, (*5*)

nondecreasing_seq g (*6*)

∧ (∀ x, D x → EFin \o g^~x −→ f x). (*7*)
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Approximation Theorem
Proof Idea

An,k

k+1
2n
k
2n

n

Bn
0

Figure: Approximation of function using simple functions

Definition approx_fun : (T → R)N := fun n x ⇒
\sum_(k < n * 2 ^ n) k%:R * 2 ^- n * (x ∈ A n k)%:R

+ n%:R * (x ∈ B n)%:R.
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Integral of a Non-negative
Function

• Integral of a simple function:

Variables (D : set T) (f : sfun T R).
Let n := ssize f.
Let A := SFun.pi f.
Let a := SFun.rng f.
Definition sintegral : R := \sum_(k < n) (a‘_k)%:E * mu (A k ∩ D).

• Integral of a non-negative function:∫
D

f dµ
def
= sup

g

{∫
D

gdµ | g non-negative simple function
≤ f over D

}

Definition nnintegral D (f : T → R) :=
ereal_sup [set sintegral mu D g | g in

[set g : nnsfun T R | ∀ x, D x → (g x)%:E ≤ f x]].
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Integral of a Function

Integral of a (non-necessarily non-negative) function:

Definition integral D (f : T → R) :=

nnintegral D (f +) - nnintegral D (f −).

• f + def
= λx .max(f(x), 0)

• f − def
= λx .max(−f(x), 0)
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Monotone Convergence Theorem
(単調収束定理)

Overview

Informal: For any non-decreasing sequence of non-negative
measurable functions gn, we have

∫
D(lim gn)dµ = lim(

∫
D gndµ)

The proof of the monotone convergence theorem is in 3 steps:

1 Prove that it holds for simple functions (Lemma 1)

2 Prove that it holds for simple functions converging to a
measurable function (Lemma 2)

3 Prove that it holds for measurable functions (Theorem)

We will only look at the formal proof of the Theorem and only
state (formally) the Lemmas
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Lemma 1
for the monotone convergence theorem

For any (1) measurable set D, any
(2) sequence of non-negative simple functions g that is
(3) nondecreasing and that (5) converges to a
(4) non-negative simple function f , we have∫

D
f dµ = lim

n→∞

∫
D
gndµ.

Variables (D : set T) (mD : measurable D). (*1*)

Variable g : (nnsfun T R)N. (*2*)

Hypothesis nd_g : ∀ x, D x → nondecreasing_seq (g ^~ x).

Variable f : nnsfun T R. (*4*)

Hypothesis gf : ∀ x, D x → g ^~ x −→ f x. (*5*)

Lemma nd_sintegral_lim :

sintegral mu D f = lim (sintegral mu D \o g).
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Lemma 2
for the monotone convergence theorem

For any (1) measurable set D, any (2) function f that is
(3) non-negative and (4) measurable, any
(5) sequence of non-negative simple functions g that is
(6) non-decreasing and (7) converging towards f , we have∫

D
f dµ = lim

n→∞

∫
D
gndµ.

Variables (D : set T) (mD : measurable D). (*1*)
Variable f : T → R. (*2*)
Hypothesis f0 : ∀ x, D x → 0 ≤ f x. (*3*)
Hypothesis mf : measurable_fun D f. (*4*)

Variable g : (nnsfun T R)N. (*5*)
Hypothesis nd_g : ∀ x, D x → nondecreasing_seq (g ˆ˜ x). (*6*)
Hypothesis gf : ∀ x, D x → EFin \o g ˆ˜ x −→ f x. (*7*)

Lemma nd_ge0_integral_lim :
integral mu D f = lim (sintegral mu D \o g).
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Monotone Convergence Theorem
(単調収束定理)

For (1) any measurable set D and any (3) non-decreasing

sequence of functions (2) gn : T → R that are (4) measurable
and (5) non-negative, we have∫

D

(
lim
n→∞

gn
)
dµ = lim

n→∞

∫
D
gndµ.

Variables (D : set T) (mD : measurable D). (*1*)

Variable g : (T → R)N. (*2*)
Hypothesis nd_g : ∀ x, D x → nondecreasing_seq (g ˆ˜ x). (*3*)
Hypothesis mg : ∀ n, measurable_fun D (g n). (*4*)
Hypothesis g0 : ∀ n x, D x → 0 ≤ g n x. (*5*)

Lemma monotone_convergence :
integral mu D (fun x ⇒ lim (g ˆ˜ x)) =
lim (fun n ⇒ integral mu D (g n)).
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Monotone Convergence Theorem
Easy direction

lim
n→∞

∫
D
gndµ ≤

∫
D

(
lim
n→∞

gn
)
dµ

lim (fun n ⇒ integral mu D (g n)) ≤ integral mu D (fun x ⇒ lim (g ˆ˜ x))

The proof is by appealing to properties of sequence of extended
real numbers and to the fact that the integral is monotone:

(* for measurable, non-negative functions *)

Lemma ge0_le_integral : (∀ x, D x → f1 x ≤ f2 x) →
integral mu D f1 ≤ integral mu D f2.

Indeed, we can use ge0_le_integral to show that the
sequence on the LHS is non-decreasing and to show that each
term is bounded by the RHS.
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Monotone Convergence Theorem
Easy direction in Coq

Lemma monotone_convergence :
integral mu D f = lim (fun n⇒ integral mu D (g n)).

Proof.
apply/eqP; rewrite eq_le; apply/andP; split; last first.
have nd_int_g : nondecreasing_seq (fun n⇒ integral mu D (g n)).
move⇒ m n mn; apply: ge0_le_integral⇒ //.
by move⇒ *; exact: g0.
by move⇒ *; exact: g0.
by move⇒ *; exact: nd_g.

have ub n : integral mu D (g n) ≤ integral mu D f.
apply: ge0_le_integral⇒ //.
− by move⇒ *; exact: g0.
− move⇒ x Dx; apply: ereal_lim_ge⇒ //; first exact/is_cvg_g.
by apply: nearW⇒ k; apply/g0.
− move⇒ x Dx; apply: ereal_lim_ge⇒ //; first exact/is_cvg_g.
near⇒ m.
have nm : (n ≤ m)%N by near: m; ∃ n.
exact/nd_g.

by apply: ereal_lim_le⇒ //; [exact: ereal_nondecreasing_is_cvg|exact: nearW].
...
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Monotone Convergence Theorem
Difficult direction (1/2)∫

D

(
lim
n→∞

gn
)

︸ ︷︷ ︸
f

dµ ≤ lim
n→∞

∫
D
gndµ

integral mu D (fun x ⇒ lim (g ˆ˜ x)) ≤ lim (fun n ⇒ integral mu D (g n))

The idea is to build a sequence of non-negative
simple functions hn (next slide) that is non-decreasing and such
that hn ≤ gn and limn→∞ hn = f .

Then we can use Lemma 2 to show∫
D
f dµ = lim

n→∞

∫
D
hndµ

which leads to

lim
n→∞

∫
D
hndµ ≤ lim

n→∞

∫
D
gndµ.
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Monotone Convergence Theorem
Difficult direction (1/2 in Coq)

Lemma monotone_convergence :
integral mu D f = lim (fun n⇒ integral mu D (g n)).

Proof.
apply/eqP; rewrite eq_le; apply/andP; split; last first.

... (easy direction) ...

rewrite (@nd_ge0_integral_lim _ point _ mu _ _ _ _ max_g2) //; last 3 first.
− move⇒ t Dt; apply: ereal_lim_ge⇒ //; first exact/is_cvg_g.
by apply: nearW⇒ n; apply: g0.
− by move⇒ t Dt m n mn; apply/lefP/nd_max_g2.
− by move⇒ x Dx; exact: cvg_max_g2_f.

apply: lee_lim.
− apply: is_cvg_sintegral⇒ //.
by move⇒ t Dt m n mn; exact/lefP/nd_max_g2.
− apply: ereal_nondecreasing_is_cvg⇒ // n m nm; apply: ge0_le_integral⇒ //.
+ by move⇒ *; apply: g0.
+ by move⇒ *; apply: g0.
+ by move⇒ *; apply/nd_g.
− apply: nearW⇒ n.
rewrite ge0_integralE//; last by move⇒ *; apply: g0.
by apply: ereal_sup_ub; ∃ (max_g2 n)⇒ // t; exact: max_g2_g.

Grab Existential Variables. all: end_near. Qed.



Formalization
of the

Lebesgue
Integral in

MathComp-
Analysis

Reynald
Affeldt (joint
work with

Cyril Cohen,
Inria)

MathComp-
Analysis

Measurable
Functions and
Simple
Functions

Integral (only
formal
definitions)

Monotone
Convergence
Theorem

Conclusions

Monotone Convergence Theorem
Difficult Direction (2/2)

Reminder: we want simple functions hn s.t. limn→∞ hn = f

We approximate (in the sense of the approximation Theorem) each
measurable function g by a function g2 and create a sequence
of functions h

Local Definition g2 n : (T → R)N :=

approx_fun D (g n).

Local Definition h : (T → R)N :=

fun n t ⇒ \big[maxr/0]_(i < n) (g2 i n) t.

• hn non-decreasing? Yes, essentially because each g2 is

• hn ≤ gn? Yes, essentially because g2n ≤ gn
• limn→∞ hn = f ? . . .
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Monotone Convergence Theorem
Difficult Direction (2/2)

. . . limn→∞ hn = limn→∞ gn?

• limn→∞ hn ≤ limn→∞ gn is easy
• limn→∞ gn ≤ limn→∞ hn

• Suppose that the RHS is < +∞
• It suffices to prove:

\∀ n \near \oo, g n t ≤ lim (EFin \o h ˆ˜ t)

• g n t is +∞:
then (approx_fun D (g n))^~ t diverges,
then lim (EFin \o g2 n ^~ t) = +oo,
then lim (EFin \o h ^~ t) = +oo

• g n t < +∞:
then (approx_fun D (g n))^~ t converges to
g n t,
then lim (EFin \o g2 n ^~ t) = g n t,
we conclude because each g2 is smaller or equal to h
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Monotone Convergence Theorem
The Last Part of Reasoning in Coq

Local Lemma cvg_max_g2_f t : D t→ EFin \o max_g2 ˆ˜ t −→ f t.
Proof.
move⇒ Dt; have /cvg_ex[l g_l] := @is_cvg_max_g2 t.
suff : l == f t by move⇒ /eqP←.
rewrite eq_le; apply/andP; split.
by rewrite /f (le_trans _ (lim_max_g2_f Dt)) // (cvg_lim _ g_l).

have := lee_pinfty l; rewrite le_eqVlt⇒ /predU1P[→|loo].
by rewrite lee_pinfty.

rewrite −(cvg_lim _ g_l) //= ereal_lim_le⇒ //; first exact/is_cvg_g.
near⇒ n.
have := lee_pinfty (g n t); rewrite le_eqVlt⇒ /predU1P[|] fntoo.
− have h := dvg_approx_fun Dt fntoo.
have g2oo : lim (EFin \o g2 n ˆ˜ t) = +oo%E.
apply/cvg_lim⇒ //; apply/dvg_ereal_cvg.
under [X in X −→ _]eq_fun do rewrite nnsfun_approxE.
exact/(nondecreasing_dvg_lt _ h)/lef_at/nd_approx_fun.

have→ : lim (EFin \o max_g2 ˆ˜ t) = +oo%E.
by have := lim_g2_max_g2 t n; rewrite g2oo lee_pinfty_eq⇒ /eqP.

by rewrite lee_pinfty.
− have approx_fun_g_g := cvg_approx_fun (g0 n) Dt fntoo.
have← : lim (EFin \o g2 n ˆ˜ t) = g n t.
have /cvg_lim← // : EFin \o (approx_fun D (g n))ˆ˜ t −→ g n t.
move/(@cvg_comp _ _ _ _ EFin) : approx_fun_g_g; apply.
by rewrite −(@fineK _ (g n t))// ge0_fin_numE// g0.

rewrite (_ : _ \o _ = EFin \o (approx_fun D (g n))ˆ˜ t)// funeqE⇒ m.
by rewrite [in RHS]/= −(nnsfun_approxE point).

exact: (le_trans _ (lim_g2_max_g2 t n)).
Grab Existential Variables. all: end_near. Qed.
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Related Work

• Formalization of the Lebesgue integral up to Fatou’s
lemma in Coq on top of Coquelicot [BCF+21]

• Main differences: no Lebesgue measure, addition of
extended real numbers not associative

• In HOL4 [MHT10]

• Recent formalization of the Lebesgue measure in
Mizar [End20]

• Rich formalization of integration theory in Lean [vD21]

• Also in Isabelle/HOL [HH11]
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Conclusion

• We have developed the Lebesgue measure and integral
• in Coq (one may claim this is the first such framework)
• up to the dominated convergence theorem (優収束定理)
• the salient different with other proof assistants is likely to

be the construction of the Lebesgue measure (not this talk)

• We have been doing so by sticking to standard definitions,
standard constructions, and a standard textbook

• Recent work: product measure, Fubini’s theorem (wip)
• Future work:

• Probability theory (i.e., extend InfoTheo [AGS20] to the
continuous case)

• Application to probabilistic programming (i.e., extend
Monae [AGNS21])
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